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SUMMARY

In nonlinear situations, optimal experimental conditions generally depend upon unk-
nown parameters to be estimated from the data collected during the experiments.
A natural approach then consists in designing the experiments sequentially, that is,
alternating estimation and design phases. We consider the determination of the opti-
mal allocation of the resource between two design steps when the design strategies at
each step are fixed.

KEY WORDS: optimal design, sequential design, approximate design.

1. Introduction

We consider a nonlinear regression model, with observations y;, given by
Y = 7](6, xk) + €k,

where 8 € © is the true value of the model parameters, with © C IRP a compact set,
Zy, denotes the experimental conditions for the k-th observation and is assumed to
belong to a compact set, {€x} is an i.i.d. sequence of normal variables (0, 02), with
o known, and 7(6, ) is the model response for the value 8 of the model parameters
and experimental conditions z. The response is assumed to be nonlinear in 6 and
twice continuously differentiable with respect to 6.

Experimental design for parameter estimation is considered, and we wish to
choose experimental conditions ZY = {z1,...,zx}, with N > p fixed, that maxi-

*The paper was submitted on the occasion of 70-th birthday of Professor Tadeusz Califski.
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mize a function ®(-) (usually concave) of the Fisher information matrix

. (8, ;) (6, ;)
2 00 aoT *

i=1

M(B: -1

For instance,
®(M) = logdet[M] or ®(M) = —trace[M™!] 1)

are classical choices. We consider the situation where the experiments can be per-
formed sequentially in two steps. First, a design Z(1) = Z with n observations is

chosen. The values Y{* = {yi,...,yn} of these observations are then used to design
the experiment £ = =N a1 for the second stage, with N —n observations. Note that

the total number of observations and the number of design stages are fixed, and no
convergence issue is thus considered.

The optimal strategy corresponds to the solution of a stochastic dynamic pro-
gramming problem (see Bellman, 1957). Denote Z° the prior information on the
system, which we assume to be in the form of a normal prior distribution A’ (9 , o)
for 0, and let Z" denote the information available after the observations Y*: 1™ =
{Z°,Z%,Y}. The problem to be solved is:

[max{Eyyr {max[Ee{ S[M(6, %) DI HIZH, (2)

nE{O, LN} “‘n+1

where Eyx{-} and Eg{-} respectively denote the expectations with respect to ¥{* and
6. This problem is very difficult to solwe, even in very simple situations, see, e.g.,
Zacks, 1977; Pronzato et al., 1993; Kulcsér et al., 1994. A simpler version of the
problem is considered in this paper: we assume that the design strategies at the two
design steps are fixed, EF = D!(Z°) and EY,; = D?(Z™) are two given functions of
790 and I respectively, and we restrict our attention to the allocation of the resource,
that is, to the determination of n.

In Section 2 the problem is put in the framework of approximate design theory.
The optimization with respect to n € {0,..., N} is replaced by the determination of
the optimal allocation of resource « € [0,1]. Various approximations are considered
in Section 4, to facilitate the solution of the problem. We show in particular how
stochastic approximation algorithms can be used to get this solution. An example is
presented in Section 4. Section 5 concludes.
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2. Approximate design theory

When E7 = D1(Z°) and EI,; = D?(Z") are two fixed strategies, the problem to be
solved becomes.

Ny Y {Eo{@[M(8,E (Z°, I HZ®Y,
ne{O, N
where ZV(7°,7") = {D'(Z°), D%(Z")}. Using simple open-loop strategies for D! and
D? makes this problem much simpler than (2). For instance, one may use a Forced
Certainty Equivalence strategy (FCE), see Pronzato et al. (1993), Runggaldier (1993),
and determine:

—_n —_ A0, n — ~n
EF = DY(1°) =EF9E(n,0"), EJ,, =D*T") =EF°E(N-n,0"), (3)
where Z7CE(k, §) = arg maxzx ®[M(6, EF)] and

6" = argmax n(0|T™),
fco

with w(@|Z™) the posterior density of 8. One can also use an Open-Loop-Feedback
(OLF) strategy, and determine:

g7 = DY(7%) = =29LF (n,19), =N | = D*(I™) = E0LF(N —n,I7), 4
n+1

where E9LF (k,T) = argmaxgs Eo{®[M(0,E})]|Z}. The strategies (3) and (4) re-
spectively correspond to a myopic implementation of local and average (or Bayesian)
optimal design.

For functions ®(-) such as those suggested in (1), the strategies (3) and (4) above
can only be used for p < n < N — p. An alternative would be as follows. First one
determines an optimal design (FCE or OLF) with N points at stage 1, and defines
ET by selecting any n points among those N. Then, one determines =, ; at stage 2
as an optimal augmentation design of size N — n:

=(2) — argmaxé[M(e ,EN)]
N
for FCE, or
=) = argmaer{‘I’[M(e;~1 Nz}

for OLF, with, in both cases, =7 deﬁned at stage 1.
In what follows we shall use instead approximate design theory, which permits
to transform the discrete optimization problem above into a continuous one. Let
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I(8,ZY) denote the information matrix per sample:
16,=)) = —M(G, g1
One has:

10,2)

[M(G’ ‘-‘1) + M( 7‘-‘n+1 ]
= aI(e: —‘l) + (1 - )1(0, “n+1
with & = n/N. We consider normalized design measures ¢ ([ £(dz) = 1), and denote:

on(8, z) on(e, :I:)
50 30T ¢(dz).

1(6,) =

Let ¢! and €2 be the design measures for stages 1 and 2 respectively, we define
16,c,¢,¢%) = al(8,£") + (1 — 2)1(8,£?),

with a € [0,1]. Note the difference with Schwabe (1995), where o denotes the proba-
bility that additional resource will be available.

The information 7" was defined for an integer number n of observations, and an
information J¢ with o € [0,1] is now required. Let m be the number! of support
points z; of &', and ; denote the associated weights. The observation y; performed
at z;, 1+ = 1,...,m, thus receives the weight u;aN, which is equivalent to having
pseudo—observations z; defined by:

2; = "7(07 .'L':i) + 6;} ’ (5)
where the errors € are normally distributed NV(0,X,), with
a= (1/a)diag{02/(Nﬂi)7i =1,... )m} . (6)

We thus define 7 as J = {Z°,¢', Z*}, with Z7* = {21,..., 2m}.
The problem to be solved then becomes: maxq¢jo,1j f(, Z°), where

f(e,I% = Ezn{Ep{®[1(0, 0, %, E))]|T*}HI'},

with ¢! = DY(Z?) and ¢2 = D?(J*) two given design strategies. This function
satisfies the following properties.

An upper bound on this number exists when ¢' is a local optimal design (FCE strategy),
see, e.g., Fedorov (1972), Silvey (1980). No such upper bound is available when average
design (OLF strategy) is used, see, e.g., Chaloner and Verdinelli (1995), but a constraint on
this number can be settled during the determination of the design.
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THEOREM 1. Assume that the same design strategy is used at stages 1 and 2, that is,
¢! = D(Z% and €2 = D(J®). Then f(0,Z°) = f(1,2°).

Proof. When a = 0, no observation is taken at stage 1 and J* = 79 so that
£(0,2°% = E5{2[1(8, D*(1°)))|T°} .
When « =1, one gets

f(,1% = Ezp{Es{®[1(6,D'(Z°))]|T*}|Z°}
Eq{®[1(6, D*(1%))]|Z°} .

Choosing D!(-) = D?(-) gives the result. O
THEOREM 2. Assume that OLF is used at stage 2, that is,

& =¢%1(7%) = argmax(Eo {210, o ¢, T )]

Then, V' = D(T%), Va € [0,1), (o, %) > (1,2%).
Proof. For any a € [0,1), one has:

f(a,Io) Z IIE%X[EZF{Eg{‘I)[I(o,a, DI(IO),£2)”Ja}IIO}]
= HEQX[Es{‘P[I(O,a,DI(IO),EZ)]IIO}]
> Ep{2[L(6, D'(Z))|T°} = £(1,T°). O

Remarks:
(i) When a > 0, the inequality in Theorem 2 is strict if there exist two vectors ZJ"
and Z’T* such that

rrégx[Eo{Q[I(B, o, €, )T} # rfng[Eo{‘I’[I(e,a, €T

where J'* = {I°,¢!, Z '1"1}, which is the case except in pathological situations.

(ii) Theorem 2 simply expresses that any experiment, on the average, reduces the
Bayesian risk, see Ivanenko and Labkovskii (1979). Such a property is not valid
in general when FCE is used at stage 2, see Thau and Witsenhausen (1966) for a
counter—-example in the context of control theory. However, numerical simulations
indicate that in general f(a,Z°) > f(1,Z°) for « € (0,1) even if FCE is used.

(iii) Even when @(-) is a concave function [(such as those proposed in (1)], concavity
of f(a,Z%) with respect to « is difficult to be proved due to the dependence of &2
on J¢, and the dependence of the distribution of Z]* on a. This difficulty exists
even if there is no explicit dependence of £2 on a, as is the case for instance when

52 — é-F‘CE(ja)-
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(iv) When o2 tends to 0, the posterior distribution 7(|.7%) tends to be concentrated
around the estimator

0" = ar max7(0|J%), 7
gpacr(6]7%) o

and Eg{®[I(6, o, £*,£2)]|.7°} tends to ®[I(8”,a,£,£2)]. Reasonable choices for &2
are such that £2 = D2(J?) tends to ¢F°F(J*) when o2 tends to zero, so that the
maximum of @[I(@a, o, €1, €2)] is reached for a value of o close to 0 when o2 tends to
0. This is in agreement with the approach suggested in Chapter 5 of Ermakov (1983),
for which, when N tends to infinity, n = B(IN) observations should be taken at stage
1, with B(N) — oo and B(N) = o(N).

3. Approximations and algorithm

The evaluation of f(c,Z°) requires the computation of two integrations, with respect
to @ and Z]" respectively. Different approaches can be used to approximate these
integrals.

3.1. Approximating the posterior mean
We consider the evaluation of Eg{®[I(0, o, £*,¢2)]|J*}, where £} = D}(Z°) and ¢2 =
D?%(J%). We shall denote
g(e,a) = q)[l(ea 0)61:62)] s

and

P(8,a) = —log[(Z7"|6)n(0)], (®)
where m(Z]*|0) and () are respectively the likelihood of Z{* and the prior density
of @ (its support is assumed to be restricted to ©). We thus have to evaluate

J 9(68, a) exp[—P(0, a)]d0 ©)
Jexp|—P(8,0)]d0

Eg{9(8,)|T*} =

A first approximation is obtained by replacing ¢(6,a) and P(6,a) by their
second—order development in @ around 8 , and computing the corresponding two
integrals in (9). This gives:

-1
Ey{9(6,0)|T*} ~ (6", ) + %trace [629(6’a) (32P(0’a) ) } )

00067 16° \| 00067 9"
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with 8 given by (7). Since

1 N ~0. No =
P(6,0)=5(0-0 )TN0 -6+ WZM[% - 1(6,2:))?,
=1

one gets ‘
62P(9,C\£) Q_l + ivﬁ . 877(9: IL',;) 677(0, x‘i)
26067 10" © T M0 107 00T o
No < 9%9(8,z;)
t— ) i o (1(0,7:) — 2;).
o7 2 56T g 10 )~ 2)

Note that the second term on the right-hand side is equal to V. aI(@a,é 1), so that
neglecting the errors (n(8, z;) —2;), one obtains for 02P(0, o) /80067 the approximate
Hessian used in the Gauss—Newton algorithm for the computation of 9a, which also
coincides with the inverse of the covariance matrix for the usual normal approximation
of the posterior density of 6.

A more precise approximation can be used when g¢(@, @) is positive (which can
always be obtained provided that g(6,a) > M > —oo by adding a suitable constant
to (0, a)). In this case, we define

Q(6,a) = P(6, ) —loglg(6, )], (10)

with P(0, a) still given by (8), and use Laplace approximation for computing the two
integrals in (9): we replace P(0, o) and Q(8, @) by their second-order expansion in 8
around their minimum. One gets (Tierney and Kadane, 1986; Tanner, 1993):

(o)) aoni (P20 )

B0, ) o0, 0)—————— D0 L
(210" )w(8") dert (20 )
where
éa:argxaneng(O,a), , (11)

P o A0
and 8" is given by (7). When the normal approximation N (Ga, Q5 +NaI(0,¢H)]Y)
is used for the posterior distribution of €, the Laplace approximation gives:

oot (Z200) )
000" |p°
det'/2[5! + NoI(®°, 1)1

Ep{9(0, )|} ~ 9(68°, @) exp|~ (8", )]
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where Q(0, &) and 8 are still given by (10) and (11), with now
P(8,a) = 5(0 — 67)7105" + NaX(®°,£1))(6 — 6°) .

The approximations above permits to express Eg{g(0,a)|7*} as a function of
J¢, the expectation of which with respect to Z™ then needs to be evaluated. The
distribution of ZJ"* can be approximated by a normal distribution:

m A0 41 8"(07€1) 6"7T(97€1)
Zl N(T’(g 7‘5 ),2a+ aoT Igoﬂo 50 |90 )

where 7(6,1) = 1(6,1),...., (6, am)".

When ¢2 = D2(J @) depends only on 6, the dependence of Ey{g9(0,2)|T*} on
J is only through 6* , and a normal approxxmauon can be used for the predictive
distribution of 8°:

6% ~ N (8”920 — (295" + NaI(@”, 1)) .

3.2. Approzimating f(c,I°)
Define
G(9, 21", 0) = 2[1(0, 0, ¢, £%)] .

One has to evaluate

f(, I

/ G(6, Z, o) (6)T %) (2] dBdzZ™
- / G(6, 27", o) (2"|8)m(6)dOdZ . (12)
As in Section 3.1, one can use a second-order expansion of G(0, Z}*, @) and
P(8, Z1", o) = —log[n(Z]"|0)7(8)]
around (é, Zm) = arg mineee,z;" P(8,Z", ). One gets 0 = 90, 2= 17({90, z;), and

Flo, 10 =~ m(218")m (B %\ (@)t /2 et -4 [62P(0 zy ,a) ]

-1
X {G(O AN o) + Ltrace l62G(0 zm ,oz)‘9 (82P(0 zm, )|90 Z“'"> ]} ,
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where
8°G(6,27",0) 8%°G(6,Z27",a
2 moy _ 5060 002"
0°G(8, 21", o) = 8%G(0,21",0) 8°G(6,Z"a) | °
927607 270z T
and
62P£0,Z%'",a2 8’P(0,27",a)
2 m oy _ 9660 8052
0°P(0,2", o) = 8°P(0,21a) &°P(6,270) | °
527087 92027 T
This gives

2 m . —
PO, 270 g ., (

Q5 + NaI(8°,6') H.(8")
HI(6') 53t )]

where X, is given by (6) and
_ Na 0n(8,z;)
Ha(0)):,; = _?”"—W )
so that

det [3213(0, zr, a)l o° zm] = det[Z; '] det[Qg)] .
141

One finally gets:

f(a, 1% =
A0 A 1 m -1
G(6', 21", ) + strace [826*(0,21 ,a)lgoyzr (62P(0, Z{",a)I 9°,z‘;"> ] , (13)
with
-1 Q —Q0H, (0.
<02P(9’Z{n’a) 0° ‘m) —_ OAO 0 Ao( ) .0 .
1,2 —SHI(0)Q X, +T,HI(0)QHL6 )2,

Again, a more precise approximation can be obtained when G(8, 27", a) > 0.
Define

Q0,2 a) = P(0,Z]",a) — log[G(0, ZT*, )],

and (6, Z{") = argming zp Q(0, Z",a). One has, see Tierney and Kadane (1986),
Tanner (1993),

0,7°) % 6@, 27, (5 B)m(B) om) ™+ Gt [5°Q(0, 277,00 5, | . (10)
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The approximations (13) and (14) require the computation of the first and
second—order derivatives 8G(0, 2, ) /8Z™ and 8%G(0, Z]*, ) /8Zm5Z{"T When
€% only depends on J° through 0 , G(8,Z1*, o) can be written as G'[6, 9(Z1 ), o],
and the first and second-order denvatwes of G'(,0, ) with respect to # and of
6(Z7) with respect to Z* are thus required. The implicit-function theorem can
then be used to compute dG'(8, 8, «)/08 and 5G'(6,8, )/ aéaéT, see Pronzato and
Pdzman (1994), P4zman, (1993).

8.8. Stochastic approzimation

Stochastic approximation techniques (see, e.g., Kushner and Yin, 1997) can be used to
maximize the expression of f(a,Z°) given by (12) with respect to o, without requiring
any evaluation or approximation of f(a,Z0).

First note that, conditionally on 8, Z* is generated from m ii.d. variables
N(0,1), according to:

o
z; =n(0,z;) + Nop, €;,

see (5,6). We can thus write Z* = ((«,0,e*), with e* = (ej,...,en), and
G(0,Z", a) =T(0,eT, ).
The simplest version of the algorithm is as follows:
dr(e®), ep®, a)
do |k

Q41 = o+ ag s (15)

where, at iteration &, 6%) and e7(®) are independently distributed, respectively m(0)
and N(0,1). The sequence ay, satisfies

o0 o0
ar >0, Zakzoo, Z(ak)2<oo.
k=1 k=1

A typical choice is ay = A/k, with A a positive constant. Note that taking a, = A/k?,
with 8 € (0,1), and averaging the iterates, that is taking

1 k
=Ezak7 (16)

=1

is known to yield a faster convergence. In practice the derivative dl"(O(k), e (k) o)/ doyq,
is evaluated by finite differences,

dr(@%),ep® o) TP ep® o 4 6) —T(OF, em®) o)
da ok o 6

with 6 small enough.

(17)
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Remark:

When the number m of support points of & is larger than the dimension p of 6,
and when the dependence of G(8, Z{*,a) in Z7" is only through éa, it might be
advantageous to directly generate vectors of estimates in the stochastic approximation
algorithm. The approximation given in Pdzman and Pronzato (1992) and Pdzman
(1993) would then be useful. It could also be used to construct an approximation of
f(,Z9), as done in Section 3.2.

4. Example

Consider the model of exponential decay 7n(6,z) = exp(—6z), with 6 scalar and
I(8,€) = (1/0?) [ 22 exp(—260z)&(dz) the criterion to be maximized. The prior den-
sity for 8 is normal A(1,0.01).

Assume that FCE is used at both design stages, so that ¢ and ¢2 have one
support point, respectively at 1 /@0 and 1 /90.

Fig. 1 presents f(c,Z°) obtained by different methods, when 62 = 0.01 and
N = 100. Note that f(0,Z°) = f(1,Z°), in agreement with Theorem 1, and that
f(a,T0) is a concave function of a.

Numerical integration is used for the curve in full line, with respect to 8, with
the prior distribution 7(6), and for each 6 with respect to Z] with the conditional
distribution m(Z}|6). For the curve in dashed line, normal approximations are used
for the posterior m(0]Z}) and the marginal 7(Z}]), see Section 3.1. The expectation
with respect to @ can then be calculated analytically, and a numerical integration is
used for the expectation with respect to Z}. The curves in dash-dotted line and in
dotted line respectively correspond to the approximations (13) and (14). Note the
good agreement of the approximation (14) with the function obtained by numerical
integration (full line).

Fig. 2 gives the evolution of oy given by (15) (respectively of & given (16))
generated by the stochastic approximation method of Section 3.3, with a; = 100/k
(respectively ay = 100/k%-5).

Consider now the case where the parameters are estimated by least-squares at
the second design stage and FCE is used. The two design stages thus differ (FCE with
Bayesian estimation is used at stage 1, FCE with LS at stage 2), and Theorem 1 no
longer applies: when « decreases, the information collected at stage 1 decreases too,
and the experiment designed at stage 2 becomes very poor. Fig. 3 presents f(a,Z°)
obtained when 02 = 0.01 and N = 100. The curve in full line is obtained by numerical
integration, the curve in dash-dotted line corresponds to the approximation (13). The
curve corresponding to the approximation (14) is not distinguishable from the curve
in full line.
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Figure 1. f(a,Z°) as a function of o (FCE with Bayesian estimation is used at stage
2). Full line: numerical integration, dashed line: normal approximation and numerical
integration, dash-dotted line: approximation (13), dotted line: approximation (14).
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Figure 2. Evolution of a4 (full line) and &, (dashed line) as functions of &
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Figure 3. f(a,Z°) as a function of a (FCE with LS estimation is used at stage 2).
Full line: numerical integration, dash-dotted line: approximation (13).
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Figure 4. Evolution of o, as a function of k
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Fig. 4 gives the evolution of a4 given by (15) generated by the stochastic appro-
ximation method of Section 3.3, with a; = 100/k.

5. Conclusions and further developments

Different objectives could be considered at the two design stages. In particular, one
may wish to discriminate between model structures at the first stage, and then esti-
mate the parameters of the structure retained in the second stage. The evaluation
of the performance of some two-stage designs is considered in Montepiedra and Yeh
(1998) in the case of linear models, for which the optimal designs do not depend
on the value of the parameters of the models. It would be of interest to investigate
how the results presented here could be extended to this discrimination/estimation
problem for nonlinear models. Note that classical methods (Hill et al., 1968; Borth,
1975; Huang, 1991) are fully sequential: a new support point is chosen after each
observation, so that this problem of resource allocation seems widely open.

A strajghtforward extension would consist in increasing the number of design
stages considered. Let M be this number, with a;, ¢ = 1,..., M, the resources
allocated to these stages. The problem to be solved would then be (with notations
similar to those of Section 2) maxnesm f(at,Z°), where

F(0,T%) = Bymysimaes {Eo{B[1(0, 0082, ., )]} 1%,

where ¢! = DY(I0), ¢ = D¥(J%-), i = 2,...,M, and J* = {I°,¢',..., ¢,
Zymttmi) | with m; the number of support points of ¢, and where SM denotes
the M-dimensional canonical simplex:

M
SM={aERM[a,~ZO,Zai=1}.

i=1

REFERENCES

Bellman R. (1957). Dynamic Programming. Princeton University Press, Princeton, N.J.

Borth D. (1975). A total entropy criterion for the dual problem of model discrimination and
parameter estimation. Journal of Royal Statistical Society B37, 77-87.

Chaloner K. and Verdinelli I. (1995). Bayesian experimental design: a review. Statistical
Science 10, 273-304.

Ermakov C. (1983). Mathematical Theory of Experimental Design. Nauka, Moscow (in Rus-
sian).

Fedorov V. (1972). Theory of Optimal Ezperiments. Academic Press, New York.



Optimal allocation in two-step sequential design 29

Hill W., Hunter W. and Wichern D. (1968). A joint design criterion for the dual problem of
model discrimination and parameter estimation. Technometrics 10, 145-160.

Huang C.-Y. (1991). Planification d’expériences pour la discrimination entre structures de
modeles. Thése de Doctorat, Université Paris XI Orsay.

Ivanenko V. and Labkovskii V. (1979). Uncertainty function of Bayes systems. Sov. Phys.
Dokl., 24, 703-704.

Kulesdr C., Pronzato L. and Walter E. (1994). Optimal experimental design and therapeutic
drug monitoring. Int. Journal of Biomedical Computing 36, 95-101.

Kushner H. and Yin G. (1997). Stochastic Approzimation Algorithms and Applications.
Springer, Heidelberg.

Montepiedra G. and Yeh A. (1998). Two-stage designs for model discrimination and pa-
rameter estimation. In: A. Atkinson, L. Pronzato and H. Wynn (Eds.), Advances in
Model-Oriented Data Analysis and Ezperimental Design, Proceedings of MODA’5, Mar-
seilles, June 22-26, 1998, 195-203. Physica Verlag, Heidelberg.

Pdzman A. (1993). Nonlinear Statistical Models. Kluwer, Dordrecht.

Pédzman A. and Pronzato L. (1992). Nonlinear experimental design based on the distribution
of estimators. Journal of Statistical Planning and Inference 33, 385-402.

Pronzato L. and Pdzman A. (1994). Second-order approximation of the entropy in nonlinear
least-squares estimation. Kybernetika 30, 187-198. (Erratum, 32(1), 104, 1996).

Pronzato L., Walter E. and Kulcsdr C. (1993). A dynamical-system approach to sequential
design. In: W. Miiller, H. Wynn and A. Zhigljavsky (Eds.), Model-Oriented Data Analysis
I, Proceedings MODAS, St Petersburg, May 1992, 11-24. Physica Verlag, Heidelberg.

Runggaldier W. (1993). Concepts of optimality in stochastic control. In: R. Barlow et al.,
(Eds.), Reliability and Decision Making, 101-114. Elsevier, Amsterdam.

Schwabe R. (1995). Uncertain resources and designing for additional information. Technical
Report A-17, Mathematisches Insitiit, Freie Universitéit Berlin.

Silvey S. (1980). Optimal Design. Chapman & Hall, London.

Tanner M. (1993). Tools for Statistical Inference. Methods for Ezploration of Posterior Di-
stributions and Likelihood Functions. Springer, Heidelberg.

Thau F. and Witsenhausen H. (1966). A comparison of closed-loop and open-loop optimum
systems. IEEE Transactions on Automatic Control 11, 619-621.

Tierney L. and Kadane J. (1986). Accurate approximations for posterior moments and mar-
ginal densities. Journal of the American Statistical Association 81, 82-86.

Zacks S. (1977). Problems and approaches in design of experiments for estimation and testing
in nonlinear models. In: P. Krishnaiah (Ed.), Multivariate Analysis 1V, 209-223. North
Holland, Amsterdam.

Received 10 August 1998; revised 5 January 1999



30

R. Gautier and L. Pronzato

O optymalnym przydziale zasobéw w dwufazowych ukladach
sekwencyjnych

STRESZCZENIE

W sytuacjach nieliniowych optymalny plan dowiadczenia zalezy od nieznanych pa-
rametréw, ktére mogg by¢ estymowane na podstawie danych zebranych w tymze do-
$wiadczeniu. Naturalnym podejéciem jest wtedy zakladanie do§wiadczenia w sposéb
sekwencyjny, powtarzajac kolejno fazy estymacji i planowania. W pracy rozwazany
jest problem optymalnego przydzialu zasobéw do$wiadczalnych do wymienionych dwu
faz przy zalozeniu ustalonej strategii w ramach kazdej z nich.

SrLowA KLUCZOWE: uklad optymalny, uklad sekwencyjny, uklad przyblizony.



